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summarise what the project has delivered, lessons learned and next steps. This report will be 
published on the SRP 2022-27 project webpages of SEFARI Gateway or on the Scottish 
Government website. 
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Project Name Air quality: domestic biomass burning and fine particle emissions. 
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John Newbold 

Start Date 1 Apr 2022 Completion Date 31 Mar 2025 (project 
terminated) 

Purpose of the project 

Burning biomass (wood, coal and manufactured solid fuels (MSF)) for domestic heating can 
release fine particles and noxious gases, causing respiratory and cardiovascular disease. This 
project sought to answer three questions:  

1. How much domestic biomass burning takes place in Scotland?
2. How much pollution does this cause?
3. Does this impair human health?

The project addressed these questions using novel measurement methods as well as modelling. 

The project was needed because of uncertainty surrounding each question, with results 
expected to inform future policy and priority-setting in this area (e.g., identifying areas where 
restrictions on domestic biomass burning might be justified on grounds of human health). 
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Objectives achieved/not achieved 

Questions 1 and 2 
1. How much domestic biomass burning takes place in Scotland?
2. How much pollution does this cause?

Questions 1 and 2 were addressed in Work Package (WP) 1, which was sub-contracted by 
SRUC to UKCEH (UK Centre for Ecology and Hydrology). The methodology and results are 
comprehensively described and discussed in the draft report provided to RESAS by UKCEH on 
1st June 2025 (hereafter cited as Di Marco et al., 2025; Appendix 1). We consider the objectives 
of WP1 to have been achieved in full. 

Task 1.1 Biomass burning inventorying 
Task 1.2a     Measurement quantification of biomass burning contribution to PM2.51 in village/ 

small town 
Task 1.2b Measurement quantification of biomass burning contribution to PM2.5 for 

understudied smoke-controlled area 
Task 1.2c Analysis of Scottish Black Carbon network sites for biomass burning aerosol 

Methods and Results from Tasks 1.2a, b and c are described in Chapter 2 of Di Marco et al. 
(2025). For practical reasons, measurements were first made in an area of central Edinburgh 
(Task 1.2b, winter of 2022/2023) and then in a rural location in Fife (Task 1.2a, winter of 
2023/2024). Methods of choice were aerosol mass spectrometry and multiwavelength 
aethalometry, as described in report sections 2.1.2 and 2.1.3. The latter section also describes 
the derivation of estimates of black carbon (soot) produced during domestic biomass burning. 

Results in Task 1.2b (section 2.3) confirmed some intuitive expectations, such as the diurnal 
distribution of biomass burning (peaking in the evening) and its relatively even spatial 
distribution across the city (compared with emissions from traffic, concentrated in the city 
centre). A novel finding was the relatively large contribution from cooking, likely arising from 
restaurants and hospitality venues. Aethalometer data showed that domestic biomass burning 
accounted for 16% of black carbon emissions, with the remainder generated by traffic. 

Results in Fife (Task 1.2a, section 2.4) showed that, compared with Edinburgh, there was less 
of an evening peak in emissions from traffic (less of a rush-hour) and an absence of emissions 
from cooking (lack of nearby restaurants). Emissions from domestic coal and wood burning 
could be distinguished: both showed peaks in the evening, as expected. Of black carbon (soot), 
27% was due to wood burning (a higher proportion than in Edinburgh) and the rest to traffic. The 
timings of peaks in emissions from biomass burning suggest more regular use throughout the 
week, as a primary source of domestic heat, compared with the urban pattern suggesting 
greater use of wood and coal fires at the weekend. 

In Task 1.2c (section 2.5), results from the two sites used in this project (Edinburgh and Fife) 
were compared with data from two other sites in Scotland (rural Auchencorth Moss and urban 
Glasgow Townhead) that are part of a long-term DEFRA study. Black carbon emissions from 
biomass burning accounted for between 4 and 6% of the concentration of PM2.5, across all four 

1 Fine particulate matter with a diameter of 2.5µm or smaller  
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sites. Concentrations of black carbon (‘cwood’) were higher from Nov-Mar, coinciding with the 
season of biomass burning. 

Task 1.3 Model quantification of biomass burning contribution to PM2.5 

After generating new data for the contribution of biomass burning to PM2.5 at two specific 
locations in Task 1.2, the objective of modelling this contribution, at high resolution (1km2), 
across Scotland was pursued in Task 1.3. This work is described in Chapter 3 of Di Marco et al. 
(2025). 

Compared with the original project plan, this task was delayed2, in agreement with RESAS, in 
order to take advantage of a DEFRA fuel survey conducted in 2022/23 and published in 2024, 
which repeated a similar survey conducted in 2018/19. Compared with the 18/19 survey, the 
22/23 survey suggests an increase of 260% in the estimate of domestically burned wood, and 
an increase in Scottish wood burning from 7% to 12% of the UK total. Use of the 22/23 survey in 
this project will therefore inevitably mean an increase in the estimate of PM2.5 from domestic 
burning. 

Emission Factors were derived for specific combinations of fuel type (separating, for example, 
seasoned and unseasoned wood) and burning device (e.g., different ages of wood burning 
stove). Several surprising observations were made based on this work, for example low 
emissions for seasoned wood (<20% moisture) compared with dried wood, and lack of lower 
emissions from modern stoves compared with their immediate predecessors.   

The distribution of domestic biomass burning (all solid fuels burnt indoors) is mapped at 1km2 
scale in Figure 3.3 of Di Marco et al., (2025). Hot spots not surprisingly coincide with locations 
with high population density. 

Results from this mapping exercise were compared with two other published sources. Several 
differences are noted (e.g., Table 3.9). Compared with the National Inventory (2021), total 
PM2.5 emissions in Scotland from the domestic burning of wood, coal and MSF, as estimated in 
this project, are 22% higher, while emissions from wood are 30% lower.  

Finally, bringing all the preceding work in Task 1 together, the impact of these new estimates of 
emissions on air pollution was modelled using the EMEP4UK model3, as described in Chapter 4 
of Di Marco et al., (2025). Perhaps the most salient excerpt is: ‘…the magnitude of PM2.5 
contributions from Scottish domestic solid fuel burning is generally small (<0.5 μg/m3, compared 
to total concentrations 4-8 μg/m3) except in hotspots around small towns such as Dumfries, Fort 
William and Ayr.’  

The validity of the EMEP4UK model, as used in this project, was checked by comparing its 
predictions with the measurements made at the sites used in this project (Edinburgh and Fife) 
and in the DEFRA (2024) report (Auchencorth moss and Glasgow). As described in section 4.3, 

2 through Project Change Requests dated 8Sep23 and 22May24 
3 EMEP = European Monitoring and Evaluation Programme, a co-operative programme for monitoring and evaluation 
of the long-range transmission of air pollutants in Europe (https://www.emep.int/). EMEP4UK is a UK application of 
this Atmospheric Chemistry and Transport Model. Full references are included in the Di Marco et al. (2025). 
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the model performed well in 3 of these 4 sites, the exception being Edinburgh, where the model 
may overpredict emissions from coal and MSF. Model uncertainties are discussed in Chapter 5 
of Di Marco et al. (2025).     

Question 3. Does domestic biomass burning affect human health? 

This question was due to be addressed by SRUC in Work Package 2. 

Much of the work anticipated in WP2 was dependent on WP1 and was therefore affected by the 
same delays (e.g., availability of relevant DEFRA data for Task 1.1 and Task 1.2c). Loss of staff 
resource then coincided with the decision of RESAS to terminate the project. This objective was 
not achieved, and the question remains unanswered. 

Task 2.1 Identification of the spatial distribution of life expectancy, and respiratory or coronary 
diseases in Scotland 

A background report (Degiovanni, 2025; Appendix 2) on methodologies that could be used to 
model the spatial distribution of life expectancy and respiratory and coronary diseases was 
prepared as part of Task 2.1. However, these models were not applied to available health data, 
and Task 2.1 was not completed.  

Task 2.2 Identification of the spatial distribution of sources of air pollution (other than those 
associated with biomass burning) across Scotland 

UKCEH ran the EMEP4UK model six times to separate and spatially map different sources of air 
pollution (see Chapter 4 of Di Marco et al., 2025):  
1. Reference run with all emissions included.
2. Rest-of-the-UK run with domestic solid fuel emissions for non-Scottish UK sources removed
(i.e. England, Wales & N. Ireland).
3. No-wood run with all wood and wood product emissions removed for Scotland
4. No-coal run with all house coal/lignite/peat emissions removed for Scotland
5. No-MSF run with all MSF emissions removed for Scotland
6. No solid fuel run with all solid fuel emissions removed for Scotland

Results (annual and winter averages for the pollutants PM2.5, NOx, NO2 and SO2) are shown in 
Figures 4.3 to 4.10 of the UKCEH report. These model runs provide the data required for 
completion of Task 2.2. Run 1 (panel (a) in Figures 4.3 to 4.10) minus Run 6 (panel (f) in 
Figures 4.3 to 4.10) represents the spatial distribution of sources of air pollution other than those 
associated with domestic biomass burning. 

Task 2.3 Measurement of the effect of PM2.5 concentration levels due to biomass burning on 
health outcomes in Scotland 

This task would have used existing information on the spatial distribution of life expectancy and 
the incidence of respiratory and coronary disease (gathered and modelled in Task 2.1) and 
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information on the magnitude and spatial distribution of pollutants from biomass burning (WP1 
and Task 2.2) to assess the possible impact of biomass burning on health.  

Little progress had been made before the project was closed at the end of March 2025. 

Task 2.4 Evaluation of the effect of the Low Emissions Zones (LEZ) on health outcomes in 
Scotland 

The intention of this task was to assess the impact of LEZ on health outcomes and to use the 
spatial distribution of emissions and health outcomes (from Tasks 1.3, 2.1 and 2.2) to identify 
opportunities for new LEZ. In the final project proposal, it was anticipated that this task would be 
performed in the fourth year of the project (2025-2026), by which time LEZ were expected to 
have been fully geographically identified and their effects on emissions computed. 

Scotland’s LEZs were introduced on 31 May 2022 with Glasgow beginning enforcement on 1 
June 2023, Dundee on 30 May 2024, and Aberdeen and Edinburgh on 1 June 2024 
(https://lowemissionzones.scot/about).  

No work was undertaken on this task before the project was closed at the end of March 2025. 
Given their relatively recent dates of introduction, more time may be needed before impacts of 
existing LEZ on emissions are sufficiently well quantified. However, the opportunity to use the 
work done in this project on the spatial distribution of air pollutants as a baseline when 
evaluating effects of LEZ and opportunities for future LEZ, is clear. 

References: 
Degiovanni, H (2025) Task 2.1.1 Review of Methodological Approaches 
Di Marco CF (2025) The contribution of indoor domestic solid fuel burning to Scotland’s air 
pollution. Draft final report to Scottish Government 

Outcomes 

1. The estimate of Scottish PM2.5 emissions from solid fuel burning made in this project is
higher than previous estimates (e.g., National Inventory 2021), due partly to higher
estimates of the quantity of solid fuels used, and partly to higher emission factors
describing the emissions per unit of fuel

a. An exception is the burning of wood, where a reduction in the emission factor
outweighs a higher estimate of the amount burned, resulting in a reduction in
national emissions from this fuel type

2. A number of observations challenge assumptions about PM2.5 emissions from domestic
biomass burning, such as:

a. New emission factors show limited benefit of switching from coal to MSF
b. Modern stoves may not have lower emissions than older stoves, although more

data are needed

https://lowemissionzones.scot/about
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c. Seasoned wood may have lower emissions than pre-dried wood

3. The project provides insights into the spatial and temporal (diurnal and seasonal)
distribution of emissions from domestic biomass burning. These insights arise from direct
measurement in two specific locations and from application of an atmospheric chemistry
and transport model (with a high degree of temporal and spatial granularity) to the whole
of Scotland:

a. From direct measurements, the proportional contribution of biomass burning to
PM2.5 emissions was greater in rural Fife (17%) than in urban Edinburgh (8%).
Restaurant cooking was identified as an underappreciated source of emissions in
Edinburgh.

b. From application of the model, the largest local values (for PM2.5 concentration
from domestic biomass burning) are in the central belt between Bathgate and
Livingston (with a major contribution from MSF). The contribution from wood
burning was proportionally greater in small towns in rural areas, such as Fort
William.

4. There was generally good agreement between modelled and measured estimates of
emissions except for:

a. Modelling accounted for secondary PM2.5 formed from gases generated by solid
fuel burning which are not included in the measurements

b. The model may overestimate the amount of coal and MSF burnt in Edinburgh

5. The contribution to PM2.5 in Scotland from biomass outside Scotland is relatively small
and confined to the Scottish Borders (most likely originating from Carlisle and vicinity).

6. The contribution of biomass burning to NO2 (of concern to human health) is very small
(around 1%)

7. There is evidence of long-term decline in PM2.5 concentration (Glasgow, from DEFRA
statistics)

Project Insights 

UK-wide surveys of domestic fuel usage and domestic biomass burning practices conducted by 
DEFRA added great value to the project (e.g., making project outputs of greater value to the 
next National Inventory) but also caused delay. The rationale for this change was identified early 
by UKCEH and accepted by RESAS. 

Closer involvement of SRUC scientists responsible for WP2 in the later stages of work by 
UKCEH scientists on WP1 (in late 2024) would have allowed a faster start to work to explore 
relationships between PM2.5 emissions and human health. 

The decision to terminate the project (therefore not answering the question of whether 
emissions of air pollutants from domestic biomass burning affect human health) should not 
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detract from the high value of work conducted by UKCEH in WP1 and WP2 Task 2.2. This work 
represents a major advance in our understanding of the spatial and temporal distribution of air 
pollutants, particularly PM2.5, in Scotland, and the contribution of domestic biomass burning to 
those pollutants. This work adds value to future National Inventory calculations and asks 
questions of practical relevance to the significant proportion of the Scottish population who use 
wood, coal and MSF in domestic settings.  

The opportunity to use the outputs of WP1 to pursue the questions not answered by the aborted 
WP2 (associations with human health and evaluation of LEZ) remains. 

Next Steps/ Future Plans 

The logic of co-mapping air pollutants and health outcomes remains and could lead to targeted, 
impactful actions to reduce emissions to deliver improvements in human health. It is 
recommended that new projects are initiated to complete the work not delivered by this project. 
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Appendix 1: Di Marco et al 2025 Scottish Solid Fuel Burning Final Report Draft 1June2025 

Di Marco et al 2025 
Scottish Solid Fuel Bur 
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Appendix 2: Task 2.1 Identification of spatial distribution of life expectancy, and respiratory or 
coronary diseases in Scotland 

Task 2.1.1 Review of Methodological Approaches 

Hernan Degiovanni 
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Executive Summary 
This document outlines key methodologies for analysing health disparities in Scotland, focusing on 
the spatial link between life expectancy, respiratory and coronary diseases, and air pollution. The 
primary challenge is to account for the geographic and temporal complexity of air pollution and its 
lagged effects on public health, while also considering socioeconomic and lifestyle factors. 
The report explores four main approaches: 

• Spatial Durbin Models (SDM): This method is well-suited for a dataset of cities or local
authorities. It accounts for "spillover effects" where air pollution in one area can influence
health outcomes in neighbouring regions. The approach requires rigorous statistical tests to
ensure the robustness of the findings.

• Spatial Autocorrelation Models: These models address the fact that nearby locations
tend to have similar health outcomes and pollution levels. This approach uses techniques
like spatial lag or spatial error models to ensure accurate effect estimates by adjusting for
spatial dependencies.

• Spatial Cluster Detection (SCD): This method identifies "hotspots" where health
outcomes are disproportionately high and determines if they align with areas of high air
pollution. This is particularly useful for generating hypotheses, targeting specific public
health interventions, and finding localized effects that might be lost by broader models.

• Multilevel and Hierarchical Models: These models are designed to handle data with
different population groups (e.g., age, social class) and are a good way to understand the
general impact of air pollution without focusing on fine-grained spatial effects.

The choice of methodology depends heavily on the granularity of the available data from UKCEH. 
This document provides a framework for the next phase of the project, which is to identify and map 
the spatial distribution of air pollution sources across Scotland. 
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1.0 Introduction 
Health disparities remain a major concern in public health research, particularly in regions with variable 
socio-economic, environmental, and lifestyle factors, such as Scotland. Measuring and identifying the 
spatial distribution of health outcomes, including life expectancy and disease prevalence, is crucial for 
effective health policy formulation. 
Air pollution is spatially distributed, and this needs to be accounted for in any modelling approach and 
complicates attribution, as well as socio-economic and lifestyle factors. 
The purpose of this document is to outline methodologies used to attribute health outcomes to the spatial 
distribution of life expectancy, and respiratory or coronary diseases in Scotland.  As such it provides the 
basis for Task 2 which is to identify the spatial distribution of sources of air pollution (other than those 
associated with biomass burning) across Scotland. 

2.0 Methodology 
This report explores various quantitative methodologies employed to measure the spatial distribution of 
health outcomes, specifically life expectancy, respiratory diseases, and coronary diseases, within Scotland. 
There are a variety of approaches that have been used to identify impact.  Generally econometric 
approaches need to recognise the spatial heterogeneity of health indicators and the lag effect of impact.  
This leads to a range of studies that include regression modelling, spatial analysis, spatial autocorrelation 
and spatial clustering approach.  Each has a level of complexity but ultimately is driven by the granularity of 
data methods.  

2.1. Spatial Durbin Model  
Chen et al. (2017) employed the spatial Durbin Model (SDM) to assess air pollution and spillover effects on 
the public health of China.  They employed data on public health in 116 cities of China over 2006 to 2012. 
A panel data set on lung cancer mortality and respiratory diseases mortality to measure public health was 
used and the statistical data of industrial emissions of sulphur dioxide and soot from the corresponding 
cities to measure air pollution. 
The SDM approach is widely used in spatial econometrics to account for spatial dependence by including 
both spatially lagged independent variables and spatially lagged dependent variables.   
These can be relatively easily developed in both R and Stata statistical frameworks.  The approach to 
developing an SDM for applying a Spatial Durbin Model (SDM) to study health impacts of air pollution 
would be to define the outcome variables and assemble the panel.  Given Chen et al (2017) using cities 
data exists at a local authority level for Scotland4.  The key to SDM is to test for spatial dependence – 
effectively to robustly assess that outcomes are dependent on pollutants.  Given the significant 
autocorrelation that is implicit in air pollution, these are essential and usually rely on specifying Moran’s I (Li 
et al.,2021). 
This approach is ubiquitous within the literature this is worth exploring, but requires a number of tests to 
establish robust estimation, e.g. to assess for endogeneity.  There are direct and indirect spillovers from air 
pollution – given the lack of granularity in some data, e.g. the lagged impact of pollution incidents, some of 
this will be captured in the error term and therefore tests are needs to assess the sensitivity of responses.   

4 https://www.environment.gov.scot/our-environment/air/air-pollution-and-air-quality/ 
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Papers which demonstrate the approach and could be used 
Chen, Shao, Tian, Xie & Yin (2017), Journal of Cleaner Production 
Studied 116 Chinese cities; used an SDM to quantify both local and spatial spillover impacts of air 
pollution on public health, explicitly decomposing direct and indirect effects. Frequently cited in later 
spatial-health work.  
Zhang et al. (2019), International Journal of Environmental Research and Public Health 
“Spatial-Temporal Effects of PM₂.₅ on Health Burden: Evidence from China.” SDM on 29 regions 
(2008–2017) showing significant spatial clustering, temporal lags, and sizable spillover effects on 
outpatient visits/expenses; includes multi-WW robustness and spatial GMM checks.  
Peng, Ma, Chen & Coyte (2021), Environmental Science and Pollution Research 
Combined CHARLS micro-health data with provincial pollution and estimated an SDM for ill-health; 
found neighbours’ pollution measurably worsens local health (clear spillovers). Good model-building 
and diagnostics. 
Scientific Reports (2021): Effect of PM₂.₅ on Perinatal Mortality in China 
Provincial panel (2002–2015) using FE and SDM; detects strong spatial autocorrelation and finds both 
local and neighbouring PM₂.₅ significantly raise perinatal mortality, with interpretable elasticities. Useful 
as a mortality-focused exemplar. 

2.2. Spatial Autocorrelation Models 
Air pollution and many health outcomes are spatially structured: nearby locations tend to have similar 
exposures and disease rates. Ignoring that violates independence assumptions, biases standard errors, 
and can produce misleading effect estimates. Spatial autocorrelation essentially means the correlation of a 
variable with itself through space.  
Spatial Regression Models These models bring together health outcome: counts (hospital admissions, 
deaths), rates, or continuous measures (lung function).  Exposure surface: particulate matter (PM2.5), NO₂, 
ozone — often estimated with monitors, kriging, or land-use regression (LUR).  Covariates: age, SES, 
smoking proxies, healthcare access, urban/rural indicators. Spatial support: point addresses, grid cells, or 
administrative areas — choice drives model class5.  
This approach comprises a suite of models which account for spatial autocorrelation. 
Key regression models include the Spatial lag model (SAR) — accounts for spatial dependence in the 
dependent variable, where a spillover effect is adding (reflecting neighbouring outcomes affecting a local 
respiratory based outcome).  Spatial error models, focuses on the residual (error term) to assess for spatial 
autocorrelation.   
Key conditional autoregressive (CAR) / intrinsic CAR (iCAR) models tend to reflect Bayesian disease 
mapping and small-area health studies; used as area-level random effects in Poisson or logistic models to 
model residual spatial structure6.  
Overall, whilst these work with a granular panel of data over time, there are elements of spatial 
confounding, effectively modelling spatial random effects can reduce bias but may also absorb part of a 

5 Clark, L. P., Zilber, D., Schmitt, C., Fargo, D. C., Reif, D. M., Motsinger-Reif, A. A., & Messier, K. P. (2025). A review of geospatial exposure 
models and approaches for health data integration. Journal of Exposure Science & Environmental Epidemiology, 35(2), 131-148. 
6 https://link.springer.com/book/10.1007/978-94-015-7799-1 
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true exposure effect if exposure is itself spatially structured.  A paper with an approach that could be 
mimicked is Beelan et al. (2014) 7 but this requires fine grained data to fully implement the test. 

Papers which demonstrate the approach and could be used 
Keshtkar, M., Heidari, H., Moazzeni, N., & Azadi, H. (2022). Analysis of changes in air pollution quality 
and impact of COVID-19 on environmental health in Iran: application of interpolation models and spatial 
autocorrelation. Environmental Science and Pollution Research, 29(25), 38505-38526. 
Lee, D., & Mitchell, R. (2014). Controlling for localised spatio-temporal autocorrelation in long-term air 
pollution and health studies. Statistical methods in medical research, 23(6), 488-506. 
Havard, S., Deguen, S., Zmirou-Navier, D., Schillinger, C., & Bard, D. (2009). Traffic-related air pollution 
and socioeconomic status: a spatial autocorrelation study to assess environmental equity on a small-
area scale. Epidemiology, 20(2), 223-230. 
Jerrett, M., Burnett, R. T., Ma, R., Pope III, C. A., Krewski, D., Newbold, K. B., ... & Thun, M. J. (2005). 
Spatial analysis of air pollution and mortality in Los Angeles. Epidemiology, 16(6), 727-736. 

2.3. Spatial Cluster Detection 
SCD helps identify where health outcomes (e.g., respiratory admissions, mortality, asthma incidence) occur 
in excess relative to expectation and whether those excesses spatially coincide with higher pollution levels 
or sources (traffic corridors, industrial zones).   Hence these are useful for hypothesis generation (hotspots 
for further study), targeting public-health interventions, and checking for spatially localised effects that 
global regression might miss8. 
Most studies use a combination of approaches, e.g. global spatial autocorrelation tests for clustering of 
values, e.g. around a particular incident.   Then local indicators of spatial association (LISA) identify 
localised high-value or low-value clusters and spatial outliers (e.g., high asthma rates surrounded by high 
rates). Useful for mapping cluster “hotspots”.  
Spatial regression / cluster detection hybrids — spatial lag/error models, geographically weighted 
regression (GWR), or spatially varying coefficient models test associations while accounting for spatial 
dependence; residual cluster detection can reveal unexplained spatial hotspots. 

Papers which demonstrate the approach and could be used 
Zou, B., Peng, F., Wan, N., Mamady, K., & Wilson, G. J. (2014). Spatial cluster detection of air 
pollution exposure inequities across the United States. PLoS One, 9(3), e91917. 
Qian, Z., Chapman, R. S., Hu, W., Wei, F., Korn, L. R., & Zhang, J. J. (2004). Using air pollution 
based community clusters to explore air pollution health effects in children. Environment 
international, 30(5), 611-620. 
Aggarwal, A., & Toshniwal, D. (2019). Detection of anomalous nitrogen dioxide (NO2) concentration 
in urban air of India using proximity and clustering methods. Journal of the Air & Waste Management 
Association, 69(7), 805-822. 

7 Beelen, R., et al. (2014). Effects of long-term exposure to air pollution on natural-cause mortality: analysis of 22 European cohorts (ESCAPE). Lancet. — major 
multi-cohort study using fine spatial exposure models and small-area exposure assignment in air pollution epidemiology. 
8 Jerrett, M., Burnett, R. T., Pope III, C. A., Ito, K., Thurston, G., Krewski, D., ... & Thun, M. (2009). Long-term ozone exposure and mortality. New England 
Journal of Medicine, 360(11), 1085-1095. 
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2.4. Multilevel and Hierarchical Models 
Multilevel models accommodate for variation within the population. Thus, it can pool information across 
locations and estimate the variance between populations for particular characteristics, e.g. different ages, 
social classes and health outcomes.  As such it provides a parsimonious approach to understanding the 
impact of air pollution on outcomes at a more general level, e.g. not accounting for more granular spatial 
effects. 

Key references on the approach 
Dominici, F., Samet, J. M., & Zeger, S. L. (2000). Combining evidence on air pollution and daily 
mortality from the 20 largest US cities: a hierarchical modelling strategy. Journal of the Royal 
Statistical Society Series A: Statistics in Society, 163(3), 263-302. 
Shaddick, G., Thomas, M. L., Green, A., Brauer, M., Donkelaar, A., Burnett, R., ... & Prüss-Ustün, A. 
(2018). Data integration model for air quality: a hierarchical approach to the global estimation of 
exposures to ambient air pollution. Journal of the Royal Statistical Society Series C: Applied 
Statistics, 67(1), 231-253. 
Bobb, J. F., Dominici, F., & Peng, R. D. (2013). Reduced hierarchical models with application to 
estimating health effects of simultaneous exposure to multiple pollutants. Journal of the Royal 
Statistical Society Series C: Applied Statistics, 62(3), 451-472. 
Blangiardo, M., Pirani, M., Kanapka, L., Hansell, A., & Fuller, G. (2019). A hierarchical modelling 
approach to assess multi pollutant effects in time-series studies. PLoS One, 14(3), e0212565. 

3.0. Summary 
Dependent on the data that is delivered through UKCEH there are a variety of approaches that can be 
used. Key issues are the granularity of data delivered but also the choice of parsimony in informing policy 
solutions. 
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