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This report details research and technical developments made to enable forecasting 

of harvest time crop yield as the growing season develops using satellite imagery, 

data integration and modelling. The aim was to develop crop yield prediction 

capabilities to enhance the Scottish Crop Map,, and to contribute to improvement 

and the future direction of this product. The objective was to develop an annual yield 

prediction model for high profile crops in Scotland. This report provides brief details 

on the method and data processing developed and the results gained. We have 

focused the development, testing and application of the method to Spring Barley, as 

this is a key economic crop and one that has best available observed yield data for 

calibration and testing purposes.  

Key Messages  

• It is feasible to use optical imagery and radar satellite data as input into a 

model to estimate crop yield.  

• We have successfully developed a data processing, analysis and 

modelling pipeline that enables yield forecasting for any field in Scotland.  

• In the best instances during calibration using training data, the model 

makes yield estimates that have a Root Mean Square Error (RMSE) of 

0.38 t/ha for field-specific observed yields.  

• When the model is tested for predictive skill using data not used for 

calibration, the accuracy declines with an RMSE of 0.71 t/ha. 

• The model performs best for yields +/- 1 ton of the mean (c. 6.0 t/ha) but 

the size of error increases with lower (under-estimates) and higher (over-

estimates) yields. 

• The over- and under-estimation of lower and higher yields will likely 

compensate when yield estimates are aggregated spatially. 

• There are two key issues that limit the current potential of the approach:  

o The lack of field-specific observed yield data with a Scotland-wide 

geographic spread that would enable more comprehensive model 

calibration and validation. There is good potential to improve the 

forecasting skill if more observed yield becomes available.  

o The amount of cloud cover over Scotland and ability to utilise time 

series of satellite optical imagery-based indices to observe crop 

development.   

• Use of radar data can help overcome limitations of optical based indices. 

There is very good potential to develop approaches for farmer participation to 

facilitate the collection of key data at the field and farm scale that will facilitate crop 

growth simulation and improved forecasting skill. OurSmartFarm is an example of an 

on-going online application under development. 

Summary 

https://www.gov.scot/publications/scottish-crop-map-2019/
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 Crop Yield Forecasting in Scotland 

 Introduction 
 

The purpose of this report is to present the development of a satellite imagery data 

integration, analysis and modelling approach to forecast harvest time crop yield at 

the field scale. The context is to build the technical and expertise capabilities to 

enable crop yield forecasting at the field scale which can be aggregated to regional 

and national scales.  

The aim of this research has been to develop this crop yield prediction capability to 

enhance the Scottish Crop Map, and to contribute to improvement and the future 

direction of this product. This requires novel ways of estimating crop yields to 

support or replace existing National Statistics, providing insight into Scottish crop 

production capability by producing predicted yield and production values for key 

crops. Using a modelling approach that supports industry intelligence and survey 

information can improve the timeliness of the statistical publication Cereal and 

oilseed rape harvest estimates whilst reducing the burden on farmers to provide yield 

values. 

The objective was to develop an annual yield prediction model for high profile crops 

in Scotland. Developing a yield prediction capability adds value to the Scottish Crop 

Map, which uses sentinel-1 radar images and a machine learning methodology to 

estimate areas and locations of Scotland’s high-profile crops (barley, wheat and 

oats) and agricultural grassland.   

Hence this report demonstrates the increasing capabilities within the Scottish 

Government and Environment, natural resources and agriculture strategic research 

programme to better predict crop yields.  

1.1.1 Defining the challenge 

The challenge this research addresses is how to provide estimates of crop yields at 

the field scale using remotely sensed data from satellites of observe biomass growth 

and soil conditions prior to harvest time and use these to estimate a final yield.  

This challenge includes addressing issues of sparse spatially and temporally 

representative observed yield data and the fact that there is often cloud cover in 

Scotland, that reduces the opportunity to utilise satellite optical imagery.  

 Data for yield prediction 

1.2.1 Available yield data 

The development of the yield forecasting model has utilised observed barley yield 

data supplied to Scottish Government by farmers using the annual Scottish Cereal 

Production and Disposal Survey. This is a survey of c.600 randomly selected farm 

businesses across Scotland. The farms selected vary between years, meaning data 

for the same businesses can occur in multiple years. 

https://www.gov.scot/publications/scottish-crop-map-2019/
https://www.gov.scot/collections/scottish-cereal-harvest-estimates/
https://www.gov.scot/collections/scottish-cereal-harvest-estimates/
https://www.gov.scot/collections/environment-agriculture-and-food-strategic-research/
https://www.gov.scot/collections/environment-agriculture-and-food-strategic-research/
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A limitation of this data is that it is provided at the business holding level, rather than 

for individual fields, making direct alignment between an observed yield and the 

satellite data problematic. For some holdings there may be data for 1-2 contiguous 

fields, whereas for others the fields may be several kilometres apart. See Appendix 

5.1 for further details. 

The period coverage of data is 2017, 2018 and 2019 with 309 yield records that can 

be assigned to individual fields. 

1.2.2 Topography 

Field topography is considered one of the driving variables behind within-field 

variation in which it can affect the crop growth and yield directly from its effect on 

microclimate condition such as solar radiation and air temperature, or indirectly from 

its effect on soil properties such as soil nutrients and soil temperature that can affect 

crop growth and development. The average field elevation, slope and aspect were 

retrieved for each field using the R package ‘elevatr’ (Hollister et al., 2021). 

1.2.3 Remote sensed data 

In this study, a time-series of Sentinel-2 images are utilized. Four bands in the visible 

and near-infrared regions with a 10m spatial resolution and two bands in the Red 

Edge and near-infrared regions with a 20m spatial resolution of Sentinel-2 A and B 

are used. The number of images for each field is different due to the various 

cloudiness conditions during growing season of barley (March to September) in each 

location and year. 

In addition, we explored the possibility of the use of Sentinel-1 Synthetic Aperture 

Radar (SAR) data to supplement the use of optical remotely sensed imagery. In the 

context of agricultural crop monitoring in Scotland, there is significant benefit in the 

use of SAR data since radar, as an active sensor operates under all weather 

conditions and can penetrate clouds. The microwave signal is sensitive to the 

dielectric and geometrical properties of crops (Ulaby, 1975). Sentinel-1 provides a 

unique opportunity to monitor plant growth progressively at a temporal resolution of 

2-6 days intervals.  

 Technical and Methods Development 

1.3.1 Image processing and analysis 

Atmospherically corrected Sentinel-2 reflectance products were used in this study. 

Sentinel-2 level-2A images covering the fields were obtained from Google Earth 

Engine (Gorelick et al., 2017). Only cloud free images were selected. Four 

vegetation indices (VI) which describe different aspects of crop growth and status 

were derived based on the Sentinel-2 Level-2A imagery:  

• The Normalized Difference Vegetation Index (NDVI): it has been 

recognised as the most popular VI for biomass and crop productivity 

assessment. It describes the vigour level of the crop. However, under high-

biomass conditions, reflectance in the red region becomes saturated, and 

further increases in chlorophyll content do not affect reflectance. 
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• The Normalized Difference Red Edge index (NDRE): The red-edge (700-

740 nm) region does not suffer saturation effect as the one observed for 

the red region of the spectrum, and thus has been found to be a better 

predictor of chlorophyll content and canopy N status. It is calculated as: 

NDRE = (NIR-RED EDGE)/(NIR+RED EDGE) where NIR and RED EDGE 

refer to near-infrared bands (842 nm) and red-edge band (705 nm), 

respectively.  

• The Weighted Difference Vegetation Index (WDVI): it offers a good 

correction for soil background in estimating the Leaf Area Index (LAI) of 

green vegetation, e.g. cereals at the vegetative stage (Clevers, 1991). 

• The Normalized Difference Moisture Index (NDMI): The NDMI describes a 

crop’s water stress level (Gao, 1996) and is calculated as the ratio 

between the difference and the sum of the refracted radiations in the near 

infrared and SWIR (1610 nm), that is: (NIR-SWIR)/(NIR + SWIR). 

In this study, the seasonal maximum VI was chosen since it enabled timely 

forecasting of yield approximately a month before harvest. The seasonal maximum 

VI was also used in several other studies to forecast cereal yields (Becker-Reshef et 

al., 2010; Franch et al., 2015; Johnson et al., 2021). 

1.3.2 Yield Model Development 

Prior to developing the yield forecasting model, a two-step analysis was carried out.  

Step 1: data exploratory analysis to detect and remove outliers. Yield observation 

beyond the 25% and 75% quartiles are considered as outliers. 

Step 2: A correlation analysis was carried out between the observed barley yield and 

each of the covariates (topography and VIs). The Pearson correlation coefficient (R) 

was used to assess the role of the different variables. The results were used to 

discard the explanatory variables having low R coefficient with yield and those 

presenting strong collinearity. 

We used Random Forests (RF) to develop the yield forecasting model. RF performs 

nonlinear regression by model averaging of many regression trees where each tree 

uses a random number of predictors sampled with replacement according to a 

uniform probability distribution (Breiman, 2001). We used the ‘ranger’ function with 

default parameters from the R package ‘ranger’ for random forests (Wright & Ziegler, 

2017). 

We used an 80-20 train-test split on the barley yield data where 248 yield records 

were randomly selected and used to train the RF model and the remaining 61 yield 

records were used to assess the model accuracy. Accuracy is measured using the 

coefficient of determination (R2) between observed and predicted yields, mean 

absolute error (MAE), root mean square error (RMSE) and normalised root mean 

square error (NRMSE). 

The coefficient of determination provides the proportion of variance in the observed 

data explained by a model, relative to observed mean with larger values being 
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better. The MAE and RMSE provide measures of the model error. NRMSE is the 

ratio of the model error and mean observed value. Lower error values are better. 

 

 Results 
 

Observed yields ranged from 2.2 to 8.4 t ha-1 with substantial spatial and year to 

year variation. Figure 1 shows the correlation between barley yield, topography and 

vegetation indices across all fields. Aspect has a significant correlation with yield (R 

= 0.15). Even though the correlation coefficient is low, it was found that fields facing 

south presented a higher yield as compared to fields facing East. This indicates that 

Aspect has potential usefulness for explaining yield differences. However, elevation 

and slope did not correlate with yield and were therefore excluded. Maximum NDRE 

over the entire barley growing season has a significant positive correlation with yield 

and has the highest R coefficient (R = 0.41) followed by WDVI, NDVI and NDMI with 

a significant correlation of 0.36, 0.33 and 0.15, respectively. The significant 

correlation with NDMI indicates that NDMI has potential usefulness for explaining 

yield variability due to water stress. NDVI and WDVI has a significant strong 

correlation with NDRE (R > 0.6) and since NDRE doesn’t suffer from the saturation 

effect, it was decided to only use NDRE and NDMI as explanatory variables for the 

yield forecasting model along with field Aspect.  
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Figure 1. Multi-panel scatterplots of tested field topography (top), vegetation 
indices (bottom) and barley yield. The lower left panels show Pearson 
correlation coefficients, and the upper right panels show pairwise scatterplots 
among variables. Symbols***, **and * indicate significance level of p < .001, 
0.01 and 0.05 respectively. The red lines are fitted linear regression among 
yield and tested variables. 
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Table 1 shows the accuracy statistics for estimating yield, calculated for the training 

and the independent test data for the random forest model. Overall model 

performance was high for training and testing with high R2 values (>0.7) and low 

error metrics.  

 
 Table 1. Accuracy statistics for the Random Forest model. 

Dataset  R2 (-) RMSE (t ha-1) MAE (t ha-1) NRMSE (%) 

Train 0.96 0.34 0.22 6.17 

Test 0.73 0.61 0.55 13.37 

  
A comparison of the predicted and measured yield values are shown in Figure 2. In 

both training and testing steps of the RF model, the scattered points were evenly 

distributed around the 1:1 line, the RMSE were 0.34 and 0.61 t ha-1 for training and 

testing of the model, respectively, and the NRMSE was lower than 13 %. This 

showed that the predicted yield values were close to the measured values, which 

indicated the reliability of the developed RF yield forecasting model. The developed 

RF model tends to slightly overestimate low yield and slightly underestimate high 

yield. 

Figure 2. Comparison between predicted and observed grain yield for barley 
using training data (left) and testing data (right). The blue lines show fitted 
linear regressions and the red lines show 1:1 line. 
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 Next Steps and Recommendations 
 

In this study the seasonal maximum NDVI was used as the main remotely sensed 

input parameter. Some studies (e.g. Rojas, 2007) have shown that seasonally 

integrated NDVI, can predict yields more accurately than measures such as the 

seasonal maximum NDVI, since it can capture the effect of adverse events which 

occur after flowering. Nevertheless, in this study the seasonal maximum VI was 

chosen since it enabled a timely prediction of production approximately a month and 

a half prior to harvest.  

The next step would be to investigate the performance of using seasonally integrated 

VI. However, calculating seasonally integrated VI implies that starting of the growing 

season (i.e. sowing date) and key phenological stages (e.g. flowering, senescence) 

are known which is usually not the case. So, further work is needed to try to infer 

phenology from remote sensing time series. Moreover, crop sowing dates is one of 

the main factors affecting yield and late sowing can have a negative effect on barley 

yield. Incorporating sowing date as an explanatory variable (as well as other 

phenological stages) in a yield forecasting model will likely improve the model 

accuracy. 

It is worth mentioning that the maximum VIs did not pertain to a singular date during 

the barley growing season but rather varied in time based on the crop and unique 

growing conditions, as expressed with the VI temporal profile of that year. For barley 

the peak VIs tended to occur in June to early July. Because of persistent cloud 

cover, this period can be missed and in that case the yield forecasting model cannot 

be applied. The synergistic use of Synthetic-Aperture Radar and optical data is 

expected to alleviate this problem. However, due to the different characteristics of 

optical and SAR sensors, it is difficult to build a relationship between the two but 

successful applications are found in the literature (Bai et al., 2020, Li et al., 2022) 

which are worth exploring. Another alternative is the utilization of multi-sensor data 

through data fusion to produce more frequent cloud free observations, e.g. fusion of 

Landsat 8 and Sentinel-2 data (Wang et al., 2017). 

The developed yield forecasting (Random Forest) model showed a relatively high 

accuracy but additional yield observations across the whole of Scotland spanning a 

wide range of weather conditions and soils would be needed to further test and 

improve the model. 

Besides empirical yield forecasting models, process-based crop simulation models 

offer powerful tools to simulate crop yield at the field scale based on the interactions 

among environmental characteristics (i.e. the climate, crop management, and soil 

conditions). However, their practical application at a regional scale is restricted by 

uncertainties in the model’s input parameters and initial conditions. To ensure better 

estimates of model input parameters, remotely sensed data (e.g. biomass, leaf area 

index, soil moisture) which provide up-to-date overview of actual crop growing 

conditions over large areas have been widely utilized in conjunction with crop models 

through data assimilation to improve crop yields prediction at large scales. This 

approach for crop yield forecasting has been successfully developed and used for 
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several crops in Europe (Van der Velde & Nisini, 2019) and worldwide and can 

constitute another potential research area for developing a yield monitoring system 

for Scotland. 

 OurSmartFarm  
 

A key solution to improving forecasting model skill is to be able to access field 

specific data from farmers. To address this there is need to develop facilities to 

enable farmers to provide data for the growing season. 

MySmartFarm (https://mysmartfarm.co.uk), a new two-way data exchange and 

simulation modelling research platform currently being developed by JHI scientists, 

can potentially serve as a tool to collect timely field observations (e.g. crop 

management, yield) that can be used to improve the RF yield forecasting model and 

as a national scale yield monitoring platform through the integration of remotely 

sensed data and crop model outputs.  

Figure 3. An example of OurSmartFarm 

 
  

OurSmartFarm provides a state-of-the-art research platform that is also a decision 

support system, crop growth monitoring and a data management system allowing 

farmers to upload their own field operations (e.g. tillage, sowing, fertilization, 

harvest,…) and observations (e.g. flowering date, yield, pest/disease,…), utilize 

multiple spatial data (field topography, satellite multispectral vegetation indices) and 

spatial data analysis methods, and crop model outputs to enable improved data 

driven decision making. Therefore, combining the use of earth observation data, crop 

models and farmer supplied field observations in OurSmartFarm creates a bridge 

between farmers and scientists to help resolve the challenge of increasing crop 

production while reducing agriculture’s environmental impact. 

  

https://mysmartfarm.co.uk/
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 Appendix 

 Methods and Data 

5.1.1 Yield data overview 

 

Figure 4. Distribution of holding level barley yield data for the years 2017-
2019. 

 

 

 

 

 

 

 

 

 

The observed yield distribution is shown in Figure 4 for the years 2017-2019, 

indicating a near-normal distribution but with a marginal skewness to lower yields. A 

constraint on the utility of the forecasting model is the accuracy of the observations. 

 

Figure 5. Cumulative distribution function of the holding level barley yield data 
for the years 2017-2019.  
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Differences in yield cumulative probability between years are shown in Figure 5. 
There is a large difference in cumulative probability for the yields above the average 
(c. 6 t ha-1). 

Alignment of holding level yield values with fields, soil type and weather cell: 

Figure 6 illustrates the challenges of aligning yield values with specific data types 
that can enable improved forecasting skill. Values for observed yield are provided at 
a business holding level, yet the spatial distribution of fields can be widely separated 
meaning that yields cannot be directly aligned to specific soil types or weather grid 
cell. An objective or OurSmartFarm is to overcome this by enabling farmers to 
provide field-specific yield (and management) data. 
 

Figure 6. Example of fields within a holding which are several kilometres apart 
spread across 18 (1km x 1 km) climate grids. 
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Aligning observed yields with fields and Remote Sensed data: 

Figure 7. Two different crops in one holding as depicted by the RGB sentinel 
image which can produce misleading maximum vegetation indices when 
averaged across the holding. 

As above, the use of OurSmartFarm can help overcome this problem by enabling 

field specific data entry. 
 


