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An updated landslide 

susceptibility model for Scotland

Introduction & Data
The GeoSure database of national 

landslides was sparsely populated at the 

time of its creation around 20 years ago, 

and therefore data-driven methods for 

landslide susceptibility were not possible. In 

this work, we look at landslide locations 

across Scotland, specifically debris flows 

(DFs), and aim to update the landslide 

susceptibility map that the British 

Geological Survey (BGS) has been using. 

To do this, we propose a Bernoulli 

likelihood model for the probability of 

landslide occurrence and a log-Gaussian 

Cox process (LGCP) model for the rate of 

landslide occurrences. We can then 

compare these data-driven susceptibility

Modelling approach Results

For landslide susceptibility we model the probability of observing 

at least one DF in a slope unit by using a Bernoulli distribution. 

For the rate of landslide susceptibility, we model the DF rate of 

occurrence per SU by using a Poisson distribution with a random 

intensity function which approximates the LGCP likelihood. 

In both cases, we assume that the observations are conditionally 

independent given a latent Gaussian field. This latent field can 

be represented as the sum of our model components: 
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These type of models (flexible and hierarchical) are best 

understood within a Bayesian framework and here we utilise the 

integrated nested Laplace approximation (INLA) to infer our 

posterior distributions of interest. Additionally, we use the 

stochastic partial differential equation approach (SPDE) to model 

our spatial random effect. 

Bernoulli model equation:

𝑦(𝒔) | 𝜂𝐵𝑒𝑟n(𝒔) ≡ 𝐵𝑒𝑟𝑛(𝑝(𝒔)),  where 𝑝(𝒔) = 𝑃𝑟{𝑂𝐷𝐹(𝒔) = 1}
𝑝(𝒔) = 𝑒𝑥𝑝{𝜂𝐵𝑒𝑟n(𝒔)} / (1 + 𝑒𝑥𝑝{𝜂𝐵𝑒𝑟n(𝒔)}) 

LGCP model equation:

𝑦𝐿𝐺𝐶𝑃 𝒔 |𝜂𝐿𝐺𝐶𝑃(𝒔) ∼ Pois(𝜆(𝒔)) ≡ Pois( 𝒔 exp 𝜂𝐿𝐺𝐶𝑃 𝒔 )
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Conclusions
The DF susceptibility and DF intensity maps both captured the 

areas in which to focus in terms of a higher DF risk. The LGCP 

model intensity map, however, pinpoints these areas with a 

higher degree of accuracy due to the nature of the point process 

modelling approach. Both models do well in terms of model 

performance, although validation measures for point-process 

models are generally complex and more along the lines of a 

residual analysis to compare variations of the model. References
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maps with the previous heuristic map of 

GeoSure. In terms of data, we have a 

selection of geographical and geological 

covariates defined at the slope unit (SU) 

level. The SU is defined to preserve geo-

morphological conditions that might induce 

landslides. The covariates underwent a 

forward selection procedure and 

information criteria were used to determine 

whether the covariate should be included in 

the model in a linear/non-linear way, or at 

all. In addition to this, we have the DF point 

locations, and from this determine the count 

per SU in order to use the grid-

approximation method for our LGCP 

likelihood. 
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