Mycotoxins in Scottish cereals: Understanding and mitigating food safety risks in a changing climate

Policy representative : Dr Jacqui McElhiney, Head of Science Division, Food Standards Scotland

RESAS PI: Dr Silvia Gratz, the Rowett Institute

The policy driver

- Regulatory Review on Mycotoxins
- EFSA opinion on T-2/HT-2
- Introduction of maximum levels in EU regulations
- UK Risk Analysis Process
- Call for evidence to inform UK position
- Need to reflect public health risks and impacts on food industry in Scotland

Addressing the evidence needs

- **Collecting the data** reviewed published studies and commissioned a survey on mycotoxins in Scottish oats and oat-based food items
- Understanding impacts on industry consulting stakeholders on key challenges
- Engaging the experts collaboration with SEFARI institutes on the co-design of research requirements through the SRP

Current and future impacts of mycotoxins in Scotland: what the evidence is telling us

- Frequently detected in Scottish cereals, T-2/HT-2 toxins in oats are a particular problem
- Individuals are frequently exposed to mycotoxins, higher exposure in years of high-risk climate for mycotoxins

Mitigation strategies

- Organic production clearly lowers risk of T-2/HT-2 contamination in oats (farm survey & field trial)
- Low cereal intensity score lowers risk for T-2+HT-2 in oats

BUT...

Pilot data on sustainable/integrated practice (direct drill vs ploughing, reduced fungicide) show increased mycotoxins in barley

Future outlook

- Understand impact of climate and severe weather
- Understand the role of soil microbiome and mycobiome
- Assess the impact of changing agronomy to sustainable and regenerative agriculture (unintended consequences?)
- Predictive modelling of fungi and mycotoxins in the environment, farm and food

Reflections on policy-science collaboration

Benefits

- A shared understanding of priorities and challenges –collaborative problem solving
- Enables FSS to access scientific expertise needed for policy development and targeting of research needs
- Helps to optimise the impact of SEFARI research outputs for the benefit of future policy on food, public health and climate change

Challenges

- Making space to engage on research needs and enabling scientists to adapt to changing policy needs
- Funding scope for better collaboration between funders to improve the targeting of resources

F9 _{2.4}	Deoxynivalenoi	
2.4.1	Unprocessed cereals other than durum wheat, cats and maize	1 250
2.4.2	Unprocessed durum wheat and oats	1 750
2.4.3	Unprocessed maize , with the exception of unprocessed maize intended to be processed by wet milling	1 750
2.4.4	Cereals intended for direct human consumption, cereal flour, bran and germ as end product marketed for direct human consumption, with the exception of foodstuffs listed in 2.4.7, 2.4.8 and 2.4.9	750
2.4.5	Pasta (dry)	750
2.4.6	Bread (including small bakery wares), pastries, biscuits, cereal snacks and breakfast cereals	500
2.4.7	Processed cereal-based foods and baby foods for infants and young children $^{\rm TV}$	200
248	Milling fractions of matee with particle size > 500 micron failing within CN code 1103 13 or 1103 20 40 and other	750

